能源利用

您当前的位置: 首页  >    >  能源利用
空气也能这样玩?水下恒压压缩空气储能来了!
发布时间:2024-07-30     作者:   来源:中国科普博览   分享到:

海上可再生能源发电,尤其是风电,已进入规模化发展时期。据国际可再生能源署(IEA)和中国风能协会(CWEA)报道,2023年全球海上风电新增装机7.3GW,累计超过50GW,其中,中国海上风电累计装机达到37.7GW,位居全球第一。

由于可再生能源具有波动性、随机性和不可预测性,难以满足居民用户稳定用能需求。储能通过在电力过剩时储存盈余电力,在电力不足时释放储存的能量补充电力缺口,能够实现可再生能源平滑输出,保障用户用能需求,在发电侧与用户侧之间建立起一条弹性纽带。

随着海上可再生能源大规模发展,海上储能需求急剧增加。如何开发出经济、适用、可靠的海上储能技术是储能相关从业者们首先需要解决的问题。

压缩空气储能技术

压缩空气储能技术是基于燃气轮机技术发展起来的物理储能技术,系统原理如下图所示,具有储能规模大、放电时间长、建设和运行成本低、寿命长等特点。

储能时,利用过剩或非峰值电能驱动电动机旋转,将电能转化为机械能,电动机带动压缩机(一种将低压气体提升为高压气体的机械)将空气从低压状态压缩至高压状态,并将高压空气储存在储气装置(盐穴、人工硐室或储气罐)中,最终将电能转换成空气热能和压力能。

释能时,高压空气从储气装置释放,进入燃烧室同燃料一起燃烧,或在换热器中被其他热流体加热,高温高压气体驱动透平(将流体介质中的能量转换成机械功的机器)旋转,透平带动发电机发电,最终将空气内能转换成电能。



压缩空气储能技术示意图

(图片来源:中国科学院工程热物理研究所)


中国科学院工程热物理研究所从2004年开始开展不需要燃烧燃料的先进压缩空气储能技术研究,完成了先进压缩空气储能技术从kW级到300MW级的蜕变,成功将先进压缩空气储能技术从理论研究推向商业化应用阶段。



工程热物理研究所压缩空气储能技术研发历程

(图片来源:中国科学院工程热物理研究所)


另辟蹊径

无论是传统压缩空气储能,还是目前已进入商业化初期的先进压缩空气储能,均采用容积不变的储气装置,属于恒容压缩空气储能。但现行的恒容压缩空气储能技术,难以满足海上可再生能源开发对储能技术的迫切需求,它面临三大关键瓶颈:

第一,沿海特殊的地理环境中,没有密封性好的地下盐穴、无法建设地下人工储气硐室,地面空间不足以安置大规模储气罐,因此难以找到合适的大规模储气场所;

第二,采用恒容储气,储释能过程中储气装置内部压力和温度不断变化,为使得透平输出功率相对稳定,需要通过节流阀调节进气压力,能量损失大,效率有待进一步提高;

第三,受限于储气装置内部压力变化和调节需求,设备需要不断变化运行工作状态,以适应储气库内压力和调节需求,频繁变化工况中效率急剧下降,缺乏可再生能源侧集成储能系统的相关理论支持。

针对以上瓶颈,中国科学院工程热物理研究所储能研发中心的研究人员准备另辟蹊径——开发水下恒压压缩空气储能技术。

我们知道,水下特定位置的水压与水深一一对应,只要水深不变,水压便维持不变,因此,设法将水压传递给储气装置内部的空气就可实现恒压储气和恒压放气。

科研人员由此发展了闭式柔性储气装置和开式刚性储气装置两种类型的水下恒压储气装置。

柔性储气装置外壁与水接触,水压通过柔性储气装置传递给装置内部空气,储气装置内部气量变化只会影响储气装置内部实际空间大小,不会导致压力变化。

开式刚性储气装置底部开孔,直接与水接触,在充放气过程中,水通过开孔进入或被排出储气装置。同样地,储气装置内部气量变化不会导致压力变化。

这两种储气装置均能实现装置内部空气在排气压力不变的情况下完全释放,可以完全利用储气空间,储能密度高。

由于储/释能过程中,储气库内压力均维持不变,压缩机和透平的工作压力也可以根据储气库设计压力最优化设计,且始终工作在设计点附近,系统能量损失小,运行效率高。

通过对比研究发现,恒压系统较恒容系统效率高3%-6%,且储气压力越大,恒压系统储能密度优势越明显,绝热恒压系统储能密度可达恒容系统3倍及以上。

不断优化海上、陆地应用

现行的压缩空气储能技术受限于沿海陆地资源条件,而水下恒压压缩空气储能技术恰好能够利用水下宽广的海床和水下恒温恒压环境,作为储气场所,储气规模不受限制,为海上可再生能源大规模发展提供高效、低成本的储能技术支撑。

通过水下恒压压缩空气储能与海上可再生能源共建,协同规划,就能实现不稳定、不可控的可再生能源平滑输出,为沿海用户提供稳定可靠的绿色电力供应。

该技术除了可以应用在海上可再生能源开发中,还可用于对现有的压缩空气储能电站进行升级改造。通过给现有的压缩空气储能电站增加地面水池和敷设直通储气装置底部联通管道,实现恒压运行,系统额定效率有望提高3%-6%,避免恒容储气使系统偏离设计工况运行,降低电站运维难度,大幅提高电站运行寿命。

近年来,我们从优化设计、优化运行及实验验证三个层面展开恒压压缩空气储能技术研究。

在优化设计方面:建立了适合于水下恒压压缩空气储能的分析方法,确定了能量损失的源头,揭示了压力能与热能协同高效储存理论,进一步建立了能量损失极小化的优化方法;

在优化运行方面:通过理论分析与实验验证相结合的方法揭示了恒压压缩空气储能关键参数调节特性,提出了多参数联合变工况调控策略,大幅拓宽高效运行范围。

在实验验证方面:为突破水下实验场地和成本限制,提出了基于深水模拟装置的恒压压缩空气储能实验技术,采用高压水和高压气模拟柔性气囊外部深水环境,搭建了兆瓦级恒压压缩空气储能系统实验平台,设计储气压力等效水深约700米。我们已完成了系统性能实验与测试,经具有CNAS资质的第三方测试,系统效率达到国际领先水平,较同规模恒容系统高出6.7%。

同时,我们也开展了储能系统与可再生能源耦合调控实验验证,结果显示,系统具有很好的负荷跟随性能,实验功率跟随误差不超过±5%,且效率均维持在额定效率的90%以上,验证了恒压系统作为发电侧储能的可行性。



恒压压缩空气储能试验平台示意图

(图片来源:中国科学院工程热物理研究所)



兆瓦级恒压压缩空气储能实验平台

(图片来源:中国科学院工程热物理研究所)


结语

未来我们将进一步对水下恒压压缩空气储能的关键部件进行深入研究,突破关键设备在沿海地带高盐雾、高湿度等特殊环境下长期稳定运行的能力,攻克开式水下恒压压缩空气储能中压缩空气在水中的溶解难题、闭式水下恒压压缩空气储能系统中柔性储气装置锚固问题,开展水下压缩空气储能技术工程示范。

相信在不久的将来,水下恒压压缩空气储能技术将逐渐发展成熟并进入产业化阶段,为海上可再生能源发展保驾护航,为实现“双碳”目标注入新的活力。


参考文献:

[1] Changchun Liu, Xu Su, Zhao Yin, Yong Sheng, Xuezhi Zhou, Yujie Xu, Xudong Wang, Haisheng Chen. Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage. Applied Energy. 2024;364:123129.


[2] Changchun Liu, Zhao Yin, Xu Su, Xuehui Zhang, Zhitao Zuo, Yong Sheng, Xuezhi Zhou, Xudong Wang, Yujie Xu, Haisheng Chen. Megawatt Isobaric Compressed Air Energy Storage: an Experimental Study on the Discharge Process. Energy Proceedings; 2024;47.



【我们尊重原创,也注重分享。版权原作者所有,如有侵犯您的权益请及时联系,我们将第一时间删除。分享内容不代表本网观点,仅供参考。】

Baidu
map
Baidu
map